PMT

P	H4

Question			Marking details	Marks Available
1	(a)	(i)	Any 4 from the following (1 mark for each):	
			- the oxygen molecules move at random / in all directions	
			- the molecules strike [the walls of] the container [and rebound]	
			- rate of change of momentum of the molecules when they strike the wall is equal to the <u>force exerted by the wall on the molecules</u> (Newton's second law of motion).	
			- force on the wall is equal and opposite to the force on the molecules (Newton's third law of motion).	
			- pressure is the force per unit area on the walls of the container. Award a maximum of 2 marks if no reference made to Newton's laws	4
		(ii)	I. <i>N</i> : number of molecules [in the container] (1)	
			II. m : mass of <u>one</u> molecule (1)	
			III. $\overline{c^2}$: mean square speed [of the molecules] (1)	3
	(b)	(i)	$n = \frac{pV}{RT} = \frac{(4 \times 10^5)(0.7)}{(8.31)(288)} $ (substitution (1)) = 117 [mol] (1)	2
		(ii)	$pV = \frac{1}{3}Nmc^{2}$ $\sqrt{c^{2}} = \sqrt{\frac{3pV}{Nm}} \text{(rearrange (1))}$ $\sqrt{c^{2}} = \sqrt{\frac{3pV}{n(32\times10^{-3})}} \text{correct incorporation of relative mol. mass (1)}$ $\sqrt{c^{2}} = \sqrt{\frac{3(4\times10^{5})(0.7)}{(117)(32\times10^{-3})}} = 473.7 \text{ m s}^{-1} \text{(1) UNIT mark}$	3
	(c)		One of the following (or equivalent)(1):	
			Volume of molecules not negligible.	
			Force exerted on walls less due to the attraction by other molecules.	
			Intermolecular forces not negligible. Accept: oxygen diatomic / density too high Collisions not elastic PE not zero	1
			Question 1 Total	[13]

Question		Marking details	Marks Available
2	<i>(a)</i>	Acceleration is - [directly] proportional to the displacement [from a fixed point] (1) - directed towards the fixed point (1)	2
	(b)	$T = \frac{24}{20} = 1.2 \ [s]$	1
	(c)	$\omega = 2\pi f = 2\pi \left(\frac{20}{24}\right) \text{ (formula and subs. ecf from (b)(1))}$ $= 5.2 \text{ [rad s}^{-1}\text{] (1)}$	2
	(<i>d</i>)	$x = 0.8$ (amplitude (1)) $\sin\left(5.2 (\omega(1))t + \frac{\pi}{2} (\text{phase (1)})\right)$ cm	3
	(e)	[or use $\omega = 5 \text{ rad s}^{-1}$ or phase $= 90^{\circ}$] $0.4 = 0.8 \sin\left(5.2t_1 + \frac{\pi}{2}\right) \qquad -0.3 = 0.8 \sin\left(5.2t_2 + \frac{\pi}{2}\right)$ $t_1 = [-]0.201 \text{ [s] (1)} \qquad t_2 = [-]0.376 \text{ [s] (1)}$	
		$\Delta t = t_2 - t_1 = 0.376 - 0.201 = 0.175$ [s] (1) ecf from (d)	3
		[If using $\omega = 5 \text{ rad s}^{-1}$, $t_1 = 0.209 \text{ [s]}(1) t_2 = 0.391 \text{ [s]}(1)$ $\Delta t = t_2 - t_1 = 0.391 - 0.209 = 0.182 \text{ [s]}(1)$]	
	(f)	$ \begin{array}{c} 0.8 \\ 0.4 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0$	
		Curve for P (1) Curve for Q relative to P (1) Axes labelled with units and scales (1) ecf for <i>A</i> , phase and <i>T</i>	3
	(g)	$x = 0.8 \sin 5.2t$ [cm] (or equivalent)	
		Allow ecf if curve in (f) is incorrect, but consistent with (g)	1
		Question 2 Total	[15]

Question			Marking details				Marks Available
3	(a)		A B C D	Temperature T /K 369.7 317.7 278.[0] 323.5	Internal Energy U /J 9217 7920 6931/6930 8065		
	(b)	 (i) (ii) (iii) (iv) (v) 	(1 for value of T ; 1 Work done by gas Work done by gas Work done by gas Work done by gas Work done by gas 768 – 660 = 108 [J	for value of U) ec $A \rightarrow B = 0$ $B \rightarrow C = -660 [J]$ $C \rightarrow D = 0$ $D \rightarrow A = 768 [J]$ $A \rightarrow B \rightarrow C \rightarrow D \rightarrow A$] ecf	f for <i>U</i> if <i>T</i> incorrect (net work done during c	cycle) =	2
	(c)		1 mark each for (ii) $\Delta U = Q - W \text{ i.e. a}$ thermodynamics (1) $C \rightarrow D 8 \text{ 065} - D \rightarrow A 9 \text{ 217} - E$ ither of these two Heat absorbed = 1), (iv) and (v); 1 ma application of equation $6 931 = Q_{CD} - 0$ $8 065 = Q_{DA} - 76$ lines correct (1) 134 + 1 920 = 3 054	rk for both (i) and (iii) fon for the first law of $Q_{CD} = 1\ 134\ [J] / 1$ 8 $Q_{DA} = 1\ 920\ [J]$ 4 $[J] / 3\ 055\ (1)$. 135	4 3
	(<i>d</i>)		Efficiency = $\frac{108}{3054}$ on 108 [If using heat absorption]	× 100% (substitu rbed = 3 000 J; Effi	tion (1)) = $3.54[\%]$ (2) ciency = 3.60%]	l) ecf	2
			Question 3 Total				[11]

Question			Marking details	Marks Available
4	(a)	(i)	Application of conservation of momentum (1)	
			$(0.36 + 0.18)v = (0.36 \times 0.40) + (0.18 \times (-0.10))$ correct eqn(1) 0.54v = 0.126 v = 0.23 [m s ⁻¹] to the right (1) – direction may be by implication	3
		(ii)	Initial KE = $\frac{1}{2}(0.36)(0.4)^2 + \frac{1}{2}(0.18)(-0.10)^2 = 0.0297$ [J] (1)	
			Final KE = $\frac{1}{2}(0.36 + 0.18)(0.23)^2 = 0.0143$ [J] (1) KE lost = $0.0297 - 0.0143 = 0.0154$ [J] as percentage: $\frac{0.0154}{0.0297} \times 100\% = 51.85$ [%] (1)	3
	(b)	(i)	$hf = \frac{hc}{\lambda} = \frac{(6.63 \times 10^{-34})(3 \times 10^{8})}{(633 \times 10^{-9})} (\text{subs.}(1)) = 3.14 \times 10^{-19} \text{ [J]} (1)$	2
		(ii)	$N = \frac{(1 \times 10^{-3})}{(3.14 \times 10^{-19})} (\text{substitution} (1)) = 3.18 \times 10^{15} (1)$	2
		(iii)	component of momentum = $\frac{h}{\lambda} \cos 30^{\circ}$	
			$=\frac{(6.63\times10^{-34})}{(633\times10^{-9})}\cos 30^\circ = 9.07\times10^{-28} \text{ kg m s}^{-1} \text{ or N s UNIT mark}$	1
		(iv)	$-N\frac{h}{\lambda}\cos 30^{\circ} - \left(N\frac{h}{\lambda}\cos 30^{\circ}\right) = F \times 1 \text{(application of N 2nd law (1))}$ $F = -2(3.18 \times 10^{15})(9.07 \times 10^{-28}) = -5.8 \times 10^{-12} \text{ N}$ Force on photon = $5.8 \times 10^{-12} \text{ [N]}$ (1)	
			Allow ecf from (b) (iii) for the component of momentum	2
			Question 4 Total	[13]

Question			Marking details	Marks Available
5	(a)		$\omega = \frac{2\pi(1200)}{60} \text{ (conversion of units (1))} = 125.7 \text{ [rad s}^{-1}\text{]} (1)$ $F = m\omega^2 r = (0.80)(125.7)^2(0.25)(\text{subs (1)}) = 3160.1 \text{ [N]} (1)$	4
	(b)	(i)	$R - mg = 3\ 160.1$ (1)	
			$R = 3\ 160.1 + (0.8)(9.81) = 3\ 168\ [N]$ (1) ecf from (a)	
		(ii)	$R + mg = 3\ 160.1$	
			$R = 3\ 160.1 - (0.8)(9.81) = 3\ 152\ [N]$ (1) ecf from (a)	3
	(c)		Resonance – frequency of rotation matches the natural / resonant frequency of vibration of the saucepan [lid] (1)	
			[When the spin rate decreases,] the frequencies no longer match / so no resonance (1)	2
			Question 5 Total	[9]

Question			Marking details	Marks Available
6	(a)		equipotential surfaces	
	(b)	(i) & (ii)	Correct diagram – 2 or more circles and 3 or more roughly symmetrical lines (1) Correct arrows and labels (1) $1 q \qquad 1 \qquad 1.60 \times 10^{-19}$	2
			$V = -\frac{1}{4\pi\varepsilon_o} \frac{1}{r} = -\frac{1}{4\pi(8.85 \times 10^{-12})} \frac{1}{2.00 \times 10^{-3}} \text{ (subs. (1))}$ $= -7.19 \times 10^{-7} \text{ [V] (1)}$	2
	(<i>c</i>)		Use of W = $q\Delta V$ (1) = $(-1.60 \times 10^{-19})(-1.20 \times 10^{-6} - (-7.19 \times 10^{-7}))$ = 7.70×10^{-26} [J] (1)	2
	(<i>d</i>)		$F_{C} = \frac{1}{4\pi\varepsilon_{o}} \frac{q^{2}}{r^{2}} = \frac{1}{4\pi(8.85 \times 10^{-12})} \frac{(1.60 \times 10^{-19})^{2}}{(1.20 \times 10^{-3})^{2}}$ $= 1.60 \times 10^{-22} [N]$	
			$F_G = G \frac{m^2}{r^2} = (6.67 \times 10^{-11}) \frac{(9.11 \times 10^{-31})^2}{(1.20 \times 10^{-3})^2} = 3.84 \times 10^{-65} \text{ [N]}$	
			Both F_C and F_G (1) (or by implication)	
			Gravitational force much less [by factor $\sim \frac{3.84 \times 10^{-65}}{1.60 \times 10^{-22}} = 2.40 \times 10^{-43}$] (or equivalent quantitative comparison or qualitative comparison such as much larger, much smaller) (1)	
			Electrostatic force repels. Gravitational force attracts. (1) Both need to be mentioned for comparison (or equivalent statement).	3
			Question 6 Total	[9]

Question			Marking details	Marks Available
7	(a)		$27.3 \times 24 \times 60 \times 60 = 2.36 \times 10^6 [s]$ (1)	
			$T = 2\pi \sqrt{\frac{d^3}{G(M_1 + M_2)}}$	
			$d = \sqrt[3]{\left(\frac{T}{2\pi}\right)^2 G(M_1 + M_2)} \text{rearrange} (1)$	
			$d = \sqrt[3]{\left(\frac{2.36 \times 10^6}{2\pi}\right)^2 (6.67 \times 10^{-11})(6.00 \times 10^{24} + 7.34 \times 10^{22})}$	
			(accept 7.34×10^{22} ignored in formula) substitution (1)	
			$d = 3.85 \times 10^8 \text{ [m]} = 385\ 000 \text{ k[m]}$	3
	(b)	(i)	$x_{cm} = \frac{M_2}{M_1 + M_2} d$	
			$=\frac{7.34\times10^{22}}{(6.00\times10^{24}+7.34\times10^{22})} \times 3.85\times10^8 \text{ (substitution (1))}$	
			= $4.65 \times 10^{6} \text{ [m]}$ (1) (~ 4650 k[m])	2
		(ii)	The centre of mass is within the Earth ecf (~1 710 km below the surface of the Earth)	1
	(<i>c</i>)		$G\frac{M_1}{x^2} = G\frac{M_2}{(d-x)^2}$ (1) – equality of the two fields in terms of x	
			$\left(\frac{x}{d-x}\right)^2 = \frac{M_1}{M_2}$	
			$x = \left(\frac{M_1}{M_2}\right)^{1/2} (d - x)$	
			$x = \left(\frac{6.00 \times 10^{24}}{7.34 \times 10^{22}}\right)^{1/2} (3.85 \times 10^8 - x) \text{ substitution (1)}$	
			$x = \left(\frac{(9.04) \times (3.85 \times 10^8)}{10.04}\right) $ rearrange (1)	4
			$x = 3.47 \times 10^8$ [m from the Earth] (1)	
			Question 7 Total	[10]